iD-A131 531 MAPPING BETWEEN SEMANTIC REPRESENTATIONS USING HORN
CLAUSES(U) DELAWARE UNIY NEWARK DEPT OF COMPUTER AND
INFORMATION SCIENCES R M WEISCHEDEL JUN 83

UNCLASSIFIED AFOSR-TR-83-8686 AFOSR-88-8198 F/G 5/7

1/1

NL

END.

5
Fuuen
W

..r‘|“1-i".:.v.x—..'
AV DA N Lo PR

LOENLELNUI N &

g o a o

e 28 Mg
2 & g
———— E 0 =
TR

| e

li2s lis ps

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

PR Y L

| S L N S

® ST, AT T ey A 4 -
T Y T X T R Y T T T TN Ty TN Ty ——
. RS AA N S T T T T e ——

UNCLASSIFIED

&l

16. DISTRIBUTION STATEMENT (of this Report)

SECURT. ¢ C_AISIFICATION OF THIS PAGE (When Darc ‘nriered)
r READ INSTRUCTIONS
Y. R égﬁu 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
- - - O
AFOSR-R- 83-0686 [~ 7
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
I YMAPPING BETWEEN SEMANTIC REPRESENTATIONS Technical ‘a
an) USING HORN CLAUSES" echnica :
6. PERFORMING ORG. REPORT NUMBER
i)
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
* P Ralph M. Weischedel |
(ap] "o
AFOSR-80-0190
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
H AREA & WORK UNIT NUMBERS
University of Delaware
Computer & Information Sciences
‘=I: Newgrk DE 19711 PE61102F; 2304/A2
Q 1. CONTROLLING OFF)JCE NAME AND ADDRESS 12. REPORT DATE ‘:'—'
<< AFOSR/NM June 1983 e
Building 410 3. NUMBER OF PAGES ‘i
Bolling AFB DC 20332 8
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CULASS. (of this veport) '.'..
UNCLASSIFIED -
15a. DECLASSIFICATION DOWNGRADING ’q
SCHEDULE T
-3

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbstract entered in Block 20, il different from Report)

DTIC

18. SUPPLEMENTARY NOTES - :
/ NS\.JL.._\werE

C AUG Y 1983
S)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) E

D

Q.

8 20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

=] Even after an unambiguous semantic interpretation has been computed for a

L sentence in context, there are at least threce reasons that a system may map

| the semantic representation R into another form S.

e 1) The terms of R. while reflecting the user view, may require deeper under-
standing, e.g. may require a version S where metaphors have been analyzed.
€D 2) Transformations of R may be more appropriate for the underlying application

system, e.g. S may be a more nearly optimal form. These transformations may not
CONT,

FORM
DD ,an 3 1473 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

VP e T T L TYe T L e YT T T e T e w TR T W W W W & R W e
LI IR S T A . LRSS S S B S o S - Trr - v
A e CR . NN - . ARSI IR AN AN A g Tl A -

UNCLASSIFT1%D
SECURITY CLASSIFICAYION OF TH!'S PAGE(When Data Enfered)
—— -~

~be linguisticly motivated.
3) Some transformations may depend on non-structural context.

Design considerations may favor factoring the process into two stages, for
reasons of understandability or for easier transportability of the components.

This paper describes the use of Horn clauses for the threce classes of trans-
formations listed above. The transformations are part of a system that

converts the English description of a software module into a formal specificatifon,
i.e. an abstract data type.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

T SRR i aru L S i

AFOSRTR- 83- 0686

MAPPING BETWEEN SEMANTIC REPRESENTATIONS_;:&?’
USING HORN CLAUSES' brIC TAE -4
Unannounced 0
Ralph M. Weischedel Justification
Computer & Information Sciences o
University of Delaware { 43 “‘.\
Newark, DE 19711 @) Distribution/
Availatlllty Codes
. AVELL Tnd/or
For consideration in NATURAL LANGUAGE Dist I s;: ceial
| '
ABSTRACT | |
, , !

Even after an unambiguous semantic interpretation has been compu for a senmenmce——————-
in context, there are al least three reasons that a system may map the semantic representation
R into another form S.

1. The terms of R, while reflecting the user view, may require deeper understanding,
e.g. may require a version S where metaphors have been analyzed.

2. Transformations of R may be more appropriate for the underlying application
syslem, e.g. S may be a more necarly optimal form. These transformations, may not
be linguisticly motivated. .

3. Some transformations may depend on non-structural context

Design considerations may favor factoring the process into two stages, for reasons of
understandability or for easier transportability of the components.

This paper describes the use of Horn clauses for the three classes of transformations
listed above. The transformations are part of a system that converts the English description of
a software module into a formal specification, i.c. an abstract data type.

1. INTRODUCTION

Parsing, semantic inlerpretation, definite reference resolution, quantificr scope dccisions,
and detcrmining the intent of a speaker/author are well-known problems of natural langauge
understanding. Yet, even after a system has generated a semantic representation R where such
dccisions have been made, there may still be a need for further transformation and
understanding of the input to generate a representation S for the underlying application system.
There are at least threec rcasons for this.

First, consider spatial metaphor. Understanding spatial metaphor seems to require

'

RESEARCH SPONSORED BY THE AIR FORCE OFFICE OF SCIENTIFIC RESEARCH. AIR FORCE SYSTEM COMMAND, USAF.
UNDER GRANT NUMBLR AFOSR-80-0190@ THE UNITED STATES GOVERNMENT IS AUTHORIZED 70 REPRODUCE AND
DISTRIBUTE REPRINTS FOR GOVLRNMLNTAL PUPOSES NOTWITHSTANDING ANY COPYRIGHT NOTATION HERLIN

+

-

Approved for publie release?
distridbutionunlimited,

cor'nputing some concrete interpreiation S for the metaphor; however, understanding the
metaphor concretely may be attempled after compuling a semantic representation R that
represents the spatial metaphor formally but without full understanding. Explaining the
system’'s ir.terpretation of a user input (e.g. for clarification dialog. allowing the user to check
the system’s undersanding, etc.) is likely to be more understandable if the terminology of the
user is employed. By having an intermediate level of understanding such as R, and generating
English output from it, one may not have to recreate the metaphor, for the terms in R use it
as a primitive.

Second, the needs of the underlying application system may dictate transformations that
are neither essential to understanding the English text nor linguisticly motivated. In a data
basc environment, transformations of the semantic representation may yield a retrieval request
that is computationally less demanding [King 80]. To promote portability, EUFID [Templeton
83] and TQA [Damerau 81) are interfaces that have a separalc component for transformations
specific to the data base. In software specification, mapping of the semantic representation R
may yield a form 5 which is more amenable for proving theorems about the specification or
for rewriting it into some standard form.

The following example, derived from a definition of stacks on page 77 of [Horowilz
76) illustrates both of the reasons above.

A stack is an ordered list in which all insertions and delctions occur at one end
called the top.

A theorem prover for abstract data types would normally assume that the end of the stack in
question is referred to by a notation such as A[1) if A is the name of the stack, rather than
understanding the spatial metaphor "one end”.

Third, it may be convenicnt to design the transformalion process in two phases, where

. the output of both phases is a semantic representation. In our system, we have chosen to map

certain paraphrases into a common form via a two step process. The forms "ith element” and
"element i" each generate the same term as a result of semantic interpretation. However, the
semantic interpreter gencrates another term for “element at position i* duc to the extra lexical
items "at" and "position”. Obviously, all three expressions correspond to onc concept. The
mapping component recognizes that the two terms generated by the semantic interprcter are
paraphrases and maps them into one form.

Scction 2 gives an overview of the system as a whole. Section 3 describes the use of
Horn clauses for the mapping from R to S. Related rescarch and our conclusions are presentcd
in scctions 4 and S.

L

2. BRIEF SYSTEM OVERVIEW

The overall system contains several components beside the mapping component that is
the focus of this paper. The system takes as input short English texts such as the data
structure descriptions in [Horowitz 76). The output is a formal specification of the data
structure defined in Horn clauses’. [In a full version of the paper, a sample text of about 10
sentences and the Horn clause output will appear here.))

First, the RUS parser [Bobrow 78], which includes a large general-purpose grammar i
of English, calfs a semantic component to incrementally compute the semantic interpretation of

the phrases being proposed. As soon as a phrase is proposed by the grammar, the semantic
interpreter either generates a semantic interpretation for the phrase or vetocs the parse. The
only modifications to adapt the parser to the application of abstract data types were to add
mathematical notation, so that phrases such as “"the list (A[1], A[2]}, ... A[N])" could be
understood. The semantic component we developed employs case frames for disambiguation
and generation of the semantic interpretation of a phrase. However, the semantic component
does not make quantifier scope decisions.

Quantifier scope decisions, reference resolution, and conversion from first—order logic
to Horn clauses is performed afier the semantic interpreter has completed its processing. The
knowledge governing these three tasks is itsclf encoded in Horn clauses antl was developed by
Danicl Chester. The output from this component is the input to the mapping component,
which is the focus of this paper.

The semantic represcntation R of a single sentence is therefore a set of Horn clauses.
In addition, the modecl of context built in understanding the text up to the current sentence is
a sel of Horn clauses and a list of entities which could be referenced in succeeding sentences.
The® mapping component performs the three tasks described in the previous section to generate
a set S of Horn clauses. S is added to the model of context prior to processing the next
input sentence.

. The choice of Horn clauses as the formal representation of the abstract data type is
based on the following motivations:
1. Once a text has been understood, the set of Horn clauses can be added 1o the

knowledge base (which is also encoded as Horn clauses). This offers the potential of
a system that grows in power.

2. The semantics of Horn clauses, their use in thcorem proving. and their executability
makes them an appropriate formalism for defining abstract data types.

3. A Horn clause theorem prover [Chester 80] allowing free intermixing of lisp and

Horn clawses gre 8 version of hirst order Jopie, where all well=formed lormulas have the form Al & A2 & .. & An > C. Luh

ol the A is an atomic lormula; € 1 an atomic tormula; and n>=0 Therclors, all varnables are Iree.

PESSPRIRI s Y

| WIS

vy
......

................................

PR e R N T N TRV e T L WO T WAL Y wa W WL TLT WL T T

- [l il Sl

theorem proving is readily available.

3. MAPPING IN THE SYSTEM

The rules of the mapping component are all encoded as Horn clauses. The antecedent
atomic formulas of our rules specify either

1. the structural change to be made in the collection of formulas or

2. conditions which are not structural in nature but which must be true if the mapping
is to apply.
We will use the notation (MAPPING-RULE (al ... am) 7 (c1 ... ck) ?y) to mean that the
atomic formulas al ... am must be present in the list 7x of atomic formulas; the list 7x of
formulas is assumed to be implicitly conjoined. The variable ?y will be bound to the result of
replacing the formulas al, ..., am in 7x with the formulas ¢l, ..., ck. There is a map between
two lists, 7x and 7y, of alomic formulas if (MAP Ix %y) is true.

The two examples given in the introduction are detailed next. For expository purposes
the rules given in this section have been simplified.

Consider the following example:

A stack is an ordered list in which all insertions and deletions occur at onc end
called the 1op. ADD(1.S) adds item I 1o stack S.

In this environment spatial mclaphors tead to be more frozen than creative. To understand
"onc end”, we assume the following rules:

1. For a sequence 7D, we may map "7E is an end of D" to "JE is a the first
sequence element of D",

2. An ordered list is a sequence.

Facts (1) and (2) are encoded as Horn clauses below.

1. (SEQUENCE D) (MAPPING-RULE ((END ?E D)) 7X
((SEQUENCE-ELEMENT ?E 1 D)) 7Y)
=> (MAP 7X 7Y)

2. (ORDERED-LIST D) => (SEQUENCE D)

The system knows how to map the notion of "end of a sequence”, and it knows that ordered
lists are sequences. Since the first sentence is discussing the end of an ordered list, the two
rules above are sufficicnt to map "end” into the appropriate concrclc semantic represcntation.
The power and gencrality of this approach is that

- a chain of rcasoning may show how to view some cntity 7D as a scquence (and
therfore the rules show how to interpret “end of ?D"). and

- other mapping rules may slaic how o interpret spatial mctaphors unrclated to "cnd"

Bl B 8B LB e Bl

* .
‘“l.

" 5

o .

;j-_; or to sequences.

’5 [A long version of the paper can give rules for how the sense of "add" being defined in the

'w example above can be interpreted in this environment.]

The second example from the introduction involves mapping the forms "ith element”, K

"element i”, and "element at position i" into the same representation. Assume that the .
semantic interpreter generates for each of the first two the list of formulas ((ELEMENT 7X) -
(IDENTIFIED-BY 7X ?Y)). The Horn clause for that mapping is as follows: #

(SEQUENCE 1T) (TOPIC 7T) 3
(MAPPING-RULE ((ELEMENT 7X) (IDENTIFIED-BY 7X 7Y)) W g
((SEQUENCE-ELEMENT 1X 7Y 1T)) 12) :

=> (MAP W 72)

Note that this rule assumes that in context some secquence 7T has been identified as the topic;
the rule identifies that the element 7X is the 7Yth member of the sequence 7T. For the
phrase "element at position i", assume the semantic interpreter generates the list of formulas
((ELEMENT 7X) (AT ?X (POSITION 7P)) (IDENTIFIED-BY 7P ?7Y)). The mapping rule for it
is similar 1o the one above.

(SEQUENCE T) (TOPIC 1T)
(MAPPING-RULE ((ELEMENT 7X) (AT 7X (POSITION ?P)) (IDENTIFIED-BY 7P 7Y)) W
((SEQUENCE-ELEMENT ?X 7Y 1)) 12)
=> (MAP W 12)

This second rule must be tried before the prior one.

The mapper halts when no more rules can be applied.

4. RELATED WORK k

A number of applicd Al systcms have been developed to support automating software
construction [Balzer 78, Green 76, Bicrmann 80, Gomez 82]. Of these, only our effort has
focussed on the mapping problem. !

- Viewing spatial metaphors in terms of a scale was proposed in [Hobbs 77). Our
mode] is somewhat more general in that the inference process

- permits specific constraints for each metaphor. not just the one view of a scale, and L)
- accounts for other mapping pfoblems in addition lo spatial metaphor. N
A very similar approah 1o mapping has been proposed in [Mark 80). Instcad of using

Horn clauses as the formalism for mapping. they encode their rules in KL-ONE [Brachman
78). The concern in [Mark 80) is inferring the appropriate service to perform in response to

L_‘_‘_A,m,s_'.._';.L! :

+

- ——L Wy Wy A SRS S Sl ol L PRI D I L A LT
PP LA Tre e e - B bF SO P ST A SO AR e St SRS LA P e Se el . .

&

TR
0.-‘ 6 .
3 |
-.. . ‘
;', a user request, rather than demonstrating means of interpreting spatial metaphors or of finding |
» contextually dependent paraphrases.
o 5. CONCLUSIONS

There are several reasons why one may have a second transduction phase even after a
- semantic representation for an utterance has been computed. The advantage of using Horn
= clauses (or any other deduction mechanism) in this mapping phase is the ability to include
_) nonstructural conditions. This means that the mapping rules may be based on reasoning about
the context.
. There are three areas for future work:
- generaling mapping rules based on additional texts,
1
- investigating use of the mapping component in reference resolution, and
-";1 - developing an indexing technique to run the mapper in a forward chaining mode.
.
;
f
1
" ;
.
:-J'
']
-,

wLLNN

SR o b B Bd S od I Bl b £l

REFERENCES

[Balzer 78) Robert Balzer, Neil Goldman, and David Wile.
Informality in Program Specification.
lIEEE Transactions on Software Engineering SE-4(2), March, 1978.

[Biermann 80) Alan W. Biermann and Bruce W. Ballard.
Toward Natural Language Computation.
JACL 6(2), 1980.

[(Bobrow 78] R.J. Bobrow.
“The RUS System.
In BL. Webber, R. Bobrow (editors), Research in Natural Language
Understanding, . Bolt, Beranek and Newman, Inc., Cambridge, MA, 1978.
BBN Technical Report 3878.

[Brachman 78] Ronald Brachman.
A Structural Paradigm for Representing Knowledge.
Technical Report, Bolt, Beranek, and Newman, Inc., 1978.

[Chester 80) Daniel L. Chester.
HCPRVR: An Interpreter for Logic Programs.
In Proceedings of the National Conference for Artificial Intelligence,
pages 93-95. American Asociation for Artificial Intelligence, Aug, 1980.

[Damerau 81] Fred J. Damerau.
Operating Statistics for the Transformational Question Answering System.
American Journal of Computational Linguistics 7(1):30-42, 1981.

[Gomez 82) Fernando Gomez.
Towards a Theory of Comprehension of Declarative Contexts.
In Proceedings of the 20th Annual Meeting of the Association for
Computational Linguisitcs, pages 36-43. Association for Computational
Linguistics, June, 1982.

[Green 76) C. Green.
The Design of the PSI Program Synthesis System.
In Seecond International Conference on Software Engineering. 1EEE
Computer Society, Oct, 1976.

[Hobbs 77) Jerry R. Hobbs.
What the Nature of Natural Language Tclls us about how to Make Natural~
Langauge-Like Programming More Natural.
In SIGPLAN Notices, pages 85~93. SIGPLAN, 1977.

{Horowitz 76] Ellis Horowitz and Sartaj Sahni.
Fundamentals of Data Structures.
Computer Science Press, Woodland Hills, CA, 1976.

(King 80] Jonathan J. King.
Intelligent Retricval Planning.
In Proceedings of the National Conference for Artificial Intelligence,
pages 243-245. American Asociation for Artificial Intelligence, Aug. 1980.

[Mark 80) William Mark.
Rule-Based Inference In Large Knowledge Bases.
In Proceedings of the National Conference on Artificial Intelligence.
American Association for Artificial Intelligence, August, 1980.

[Templeton 83)
Marjorie Templeton and John Burger.
Problems in Natural Language Interface fo DBMS with Examples from EUFID.
In Conference on Natural Language Processing, pages 3-16. Association
for Computational Linguistics, Feb, 1983.

Lkl
&

T
At Loy
¢ R '
. . . .
PP R N

i

.
S
.
.t

g P - PP R T PO S ‘;L.-;L

C e N 4
S
.
A&
. ¢
¢
.
, B
t
y N ‘
. .
-
4
l X -
3 ‘)
[' i PR
o » gy w‘ I .,
S Y. . .. B T
v » ¥
L b
-» K] »

